Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Filipe A. Almeida Paz,^{a*} Fa-Nian Shi,^a Tito Trindade,^a Jacek Klinowski^b and João Rocha^a

^aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and ^bDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England

Correspondence e-mail: fpaz@dq.ua.pt

Key indicators

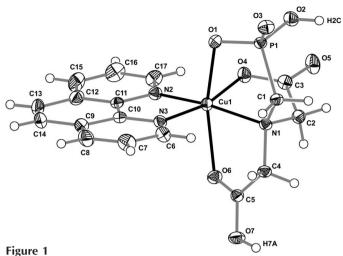
Single-crystal X-ray study T = 180 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.038 wR factor = 0.089Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[Hydrogen *N*-(phosphonomethyl)iminodiacetato](1,10-phenanthroline)copper(II) trihydrate: a low-temperature redetermination

The room-temperature crystal structure of the title compound, $[Cu(H_2pmida)(phen)] \cdot 3H_2O$ [where H_2pmida^{2-} is hydrogen N-(phosphonomethyl)iminodiacetate, $C_5H_{10}NO_7P^{2-}$, and phen is 1,10-phenanthroline, $C_{12}H_8N_2$], was recently determined by Pei Lu, Ke, Li, Qin, Zhou, Wu & Du [Struct. Chem. (2004), 15, 207–210]. We report here a redetermination, at 180 (2) K, with greatly improved precision. Hydrogen bonds lead to the formation of one-dimensional tapes which run along the [100] direction of the unit cell. Adjacent tapes are interconnected $via \ \pi-\pi$ offset stacking (between the 1,10-phenanthroline ligands) and by hydrogen bonds involving the water molecules of crystallization.

Received 4 July 2005 Accepted 5 October 2005 Online 12 October 2005


Comment

During the course of our research on novel crystalline organic–inorganic hybrid materials (Almeida Paz, Khimyak et al., 2002; Almeida Paz et al., 2005; Almeida Paz & Klinowski, 2004a,b), containing organic ligands with chelating and highly flexible 'arms', such as diethylenetriaminepentaacetic acid (Almeida Paz, Bond et al., 2002), nitrilotriacetic acid (Almeida Paz & Klinowski, 2003) and N-(phosphonomethyl)iminodiacetic acid (H₄pmida) (Mafra et al., 2005; Shi et al., 2005; Almeida Paz et al., 2004), we recently isolated, in quantitative yield, large single crystals of the title compound, (I), which is composed of discrete complexes of Cu^{2+} with 1,10-phenanthroline (phen) and H_2 pmida $^{2-}$ ligands, co-crystallizing with three solvent molecules in space group $P\overline{1}$.

Although the crystal structure of this compound has recently been reported (Pei et al., 2004), we redetermined it at 180 (2) K, with a final R value of 0.0376, to gain more precise data for our studies of the magnetic properties of such crystalline hybrid materials. The low-temperature redetermination allowed the direct location of all H atoms associated with the protonated carboxylic and phosphonic acid groups, and with the three water molecules of crystallization, thus giving a

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

A view of the [Cu(H₂pmida)(phen)] complex molecule present in the crystal structure of the title compound, showing the labelling scheme for all non-H atoms and for the two H atoms belonging to the carboxylic and phosphonic acid groups. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres.

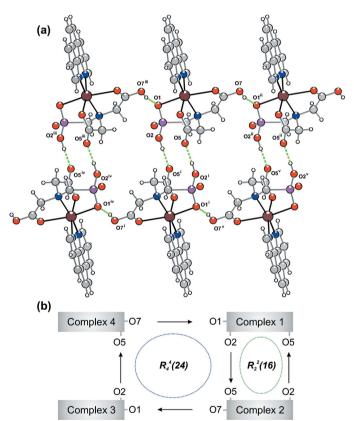
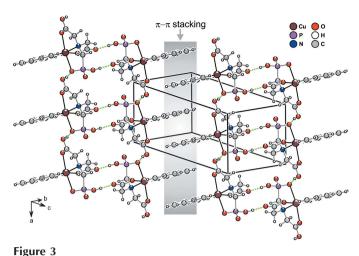



Figure 2 Hydrogen bonding in (I) represented as green-filled dashed bonds giving a one-dimensional tape running along the [100] direction of the unit cell with a schematic diagram showing the two graph-set motifs, viz. $R_2^2(16)$ and $R_4^4(24)$. [Symmetry codes: (i) 1 - x, 1 - y, -z; (ii) 1 + x, y, z; (iii) -1 + x, y, z; (iv) -x, 1 - y, -z; (v) 2 - x, 1 - y, -z.]

much better insight into the hydrogen-bond network present in the crystal structure of (I).

The unit-cell volume decreased by ca 13 Å³, consistent with determination at a lower temperature. The asymmetric unit

 π - π offset interactions, running along the [100] direction of the unit cell between 1,10-phenanthroline residues belonging to adjacent one-dimensional hydrogen-bonded tapes (see Fig. 2). Hydrogen bonds are represented as green-filled dashed bonds.

composed of a complete [Cu(H₂pmida)(phen)] complex (Fig. 1) plus three water molecules of crystallization (O1W, O2W and O3W). The crystallographically unique Cu^{2+} atom is coordinated by one phen residue via the two N-donor atoms, leading to a bite angle of 82.18 (9)°, which is in good agreement with that reported by Pei et al. [82.06 (16)°], and also with those typically found in related compounds as revealed by a search in the Cambridge Structural Database (CSD, Version 5.26; Allen, 2002; Allen & Motherwell, 2002). The remaining four positions of the Cu²⁺ coordination are occupied by the N- and O-donor atoms from the H₂pmida²⁻ anionic ligand, leading to a typical Jahn-Teller distorted octahedral coordination geometry, {CuN₃O₃}. In general, the Cu-N and Cu-O bond lengths and angles (Table 1) are not significantly different from those obtained from the roomtemperature determination (Pei et al., 2004). Each [Cu(H₂pmida)(phen)] complex is connected to adjacent molecules via a series of hydrogen bonds between the protonated carboxylic and phosphonic acid groups (donors), and the coordinated carboxylate groups (acceptors) of a neighbouring complex (Fig. 2 and Table 2). Such a regular arrangement of hydrogen bonds between adjacent complexes leads to the formation of two graph-set motifs, viz. $R_2^2(16)$ and $R_4^4(24)$ (Fig. 2), which are recursively repeated along the [100] direction of the unit cell, creating a one-dimensional hydrogen-bonded tape. The intermetallic Cu1···Cu1ⁱ distance across the O7···O1 hydrogen-bond bridge is 7.571 (2) Å, while across the O2···O5 bridge, Cu1···Cu1ⁱⁱ is 9.162 (2) Å [symmetry codes: (i) -1 + x, y, z; (ii) 1 - x, 1 - y, -z]. The one-dimensional tape is formed in such a way that the coordinated phen molecules are external to the hydrogen-bonded core (Fig. 2). Therefore, the aromatic residues are engaged in offset π - π stacking along the [100] direction of the unit cell, thus linking neighbouring hydrogen-bonded tapes (Fig. 3). Further connections between tapes are made by hydrogen bonds involving the water molecules of crystallization (Fig. 4 and Table 2), thus leading, along with the above-mentioned π - π interactions, to a three-

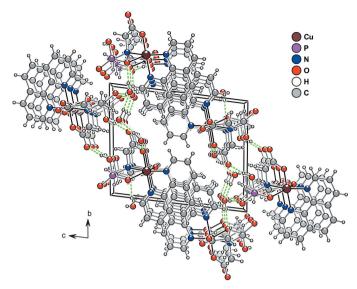


Figure 4
Perspective view of the crystal packing of the title compound viewed along the [100] direction of the unit cell. Hydrogen bonds are represented as green-filled dashed bonds. For hydrogen-bonding geometry, see Table 2.

dimensional supramolecular arrangement of [Cu(H₂pmida)(-phen)] complexes.

Experimental

Chemicals were readily available from commercial sources and were used as received without further purification, i.e. N-(phosphonomethyl)iminodiacetic acid hydrate (H₄pmida, 97% Fluka), 1,10phenanthroline monohydrate (phen, >99.0% Fluka) and copper(II) hydroxide [CuCO₃·Cu(OH)₂, 55% in Cu, Panreac]. The title compound was synthesized from a mixture containing 0.19 g of CuCO₃·Cu(OH)₂, 0.38 g of H₄pmida and 0.23 g of phen in ca 6.7 g of distilled water. The mixture was stirred at ambient temperature for 30 min, yielding a homogeneous suspension with a molar composition of ca 1.0:1.9:1.4:433, which was transferred to PTFE-lined stainless steel reaction vessels (ca 40 ml). Reactions took place over a period of 3 d, under autogeneous pressure and static conditions, in a preheated oven at 373 K. The vessels were left to cool to ambient temperature before opening. The mother liquor was filtered off and allowed to stand in the open air for approximately 2 d, yielding a large amount of a dark-green single-crystalline phase. Individual single crystals were washed with copious amounts of distilled water (3 \times ca 50 ml), and then air-dried at ambient temperature to give the title compound.

Crystal data

Crystai aata	
$[Cu(C_5H_{10}NO_7P)(C_{12}H_8N_2)]\cdot 3H_2O$	Z = 2
$M_r = 522.89$	$D_x = 1.697 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 7.5714 (15) Å	Cell parameters from 6202
b = 10.696 (2) Å	reflections
c = 13.047 (3) Å	$\theta = 1.0–27.5^{\circ}$
$\alpha = 81.98 \ (3)^{\circ}$	$\mu = 1.21 \text{ mm}^{-1}$
$\beta = 85.04 (3)^{\circ}$	T = 180 (2) K
$\gamma = 78.40 \ (3)^{\circ}$	Block, green
$V = 1023.1 \text{ (4) Å}^3$	$0.10 \times 0.10 \times 0.07 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer Thin–slice ω and φ scans $R_{\rm int} = 0.038$ Absorption correction: multi-scan (SORTAV; Blessing, 1995) $h = -9 \rightarrow 9$ $k = -13 \rightarrow 13$ 11202 measured reflections $l = -14 \rightarrow 16$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0207P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.089$ S = 1.06 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.81 \ {\rm e}\ {\rm A}^{-3}$ $\Delta\rho_{\rm min} = -0.51 \ {\rm e}\ {\rm A}^{-3}$

Table 1 Selected geometric parameters (Å, °).

Cu1-O1	2.474 (2)	Cu1-N3	2.032 (2)
Cu1-O4	1.9412 (18)	Cu1-N1	2.118 (2)
Cu1-N2	2.005 (2)	Cu1-O6	2.3489 (18)
O4-Cu1-N2	90.72 (8)	N3-Cu1-N1	104.59 (8)
O4-Cu1-N3	166.90 (8)	O4-Cu1-O6	102.28 (7)
N2-Cu1-N3	82.18 (9)	N2-Cu1-O6	94.96 (8)
O4-Cu1-N1	84.52 (8)	N3-Cu1-O6	89.34 (8)
N2-Cu1-N1	167.49 (8)	N1-Cu1-O6	74.86 (7)

Table 2 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
$02-H2C\cdots O5^{i}$ $07-H7A\cdots O1^{ii}$ $01W-H1C\cdots O3^{iii}$ $01W-H1D\cdots O1^{iv}$ $02W-H2D\cdots O1W$ $02W-H2E\cdots O2^{iii}$ $03W-H3A\cdots O2W^{v}$	0.90 (1)	1.67 (1)	2.564 (3)	175 (3)
	0.89 (3)	1.66 (3)	2.540 (3)	168 (3)
	0.95 (1)	1.77 (1)	2.717 (3)	178 (3)
	0.95 (1)	1.94 (2)	2.853 (3)	162 (3)
	0.95 (1)	1.76 (1)	2.704 (4)	166 (3)
	0.96 (3)	2.17 (2)	3.087 (3)	160 (3)
$O3W-H3B\cdots O4$	0.97 (3)	1.85 (4)	2.805 (4)	166 (3)
	0.95 (3)	2.06 (3)	2.999 (3)	172 (3)

Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) -x+1, -y+2, -z+1; (v) -x+1, -y+1, -z+1.

H atoms associated with the three water molecules of crystallization, and with the protonated carboxylic and phosphonic acid groups (H2C and H7A), were clearly visible in difference Fourier maps, and were included in subsequent least-squares refinements. For the water molecules, the O—H and H···H distances were restrained to 0.95 (1) and 1.55 (1) Å, respectively, to ensure a chemically reasonable geometry for these groups. For the hydroxyl groups, the O—H distances were restrained to 0.90 (1) Å. These H atoms were further refined with an isotropic displacement parameter fixed at $1.5U_{\rm eq}$ of the parent O atoms. H atoms bound to carbon were placed in idealized positions and allowed to ride on their parent atoms with relative isotropic displacement parameters ($U_{\rm iso}$) fixed at $1.2U_{\rm eq}$ of the parent C atom and C—H = 0.95 Å.

Data collection: *COLLECT* (Nonius 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK* and *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXTL* (Bruker 2001);

metal-organic papers

molecular graphics: *DIAMOND* (Brandenburg, 2001); software used to prepare material for publication: *SHELXTL* (Bruker 2001).

The authors are grateful to the Fundação para a Ciência e Tecnologia (FCT, Portugal) for their general financial support under the POCTI programme (supported by FEDER), and also for the postdoctoral research grant No. SFRH/BPD/9309/2002 (to FNS).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Allen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407-422.
- Almeida Paz, F. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). Acta Cryst. C58, m608–m610.
- Almeida Paz, F. A., Khimyak, Y. Z., Bond, A. D., Rocha, J. & Klinowski, J. (2002). Eur. J. Inorg. Chem. pp. 2823–2828.
- Almeida Paz, F. A. & Klinowski, J. (2003). *J. Phys. Org. Chem.* **16**, 772–782. Almeida Paz, F. A. & Klinowski, J. (2004*a*). *Inorg. Chem.* **43**, 3882–3893.

- Almeida Paz, F. A. & Klinowski, J. (2004b). Inorg. Chem. 43, 3948-3954.
- Almeida Paz, F. A., Rocha, J., Klinowski, J., Trindade, T., Shi, F.-N. & Mafra, L. (2005). *Prog. Solid State Chem.* Submitted.
- Almeida Paz, F. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759–2768.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). *J. Appl. Cryst.* 27, 435.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-58.
- Brandenburg, K. (2001). *DIAMOND*. Version 2.1a. Crystal Impact GbR, Bonn, Germany.
- Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc. Madison, Wisconsin, USA.
- Mafra, L., Almeida Paz, F. A., Shi, F.-N., Rocha, J., Trindade, T., Fernandez, C., Makal, A., Wozniak, K. & Klinowski, J. (2005). *Chem. Eur. J.* In the press. Nonius (1998). *COLLECT*. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pei, H., Lu, S., Ke, Y., Li, J., Qin, S., Zhou, S., Wu, X. & Du. W. (2004). Struct. Chem. 15, 207–210.
- Shi, F.-N., Almeida Paz, F. A., Girginova, P. I., Mafra, L., Amaral, V. S., Rocha, J., Wozniak, K., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct. In the press.